Gambar 9.9 Siklus Carnot
Pada
gambar tersebut suatu gas ideal berada di dalam silinder yang terbuat
dari bahan yang tidak mudah menghantarkan panas. Volume silinder
tersebut dapat diubah dengan cara memindahkan posisi pistonnya. Untuk
mengubah tekanan gas, diletakkan beberapa beban di atas piston. Pada
sistem gas ini terdapat dua sumber kalor yang disebut reservoir suhu
tinggi (memiliki suhu 300 K) gas memiliki temperatur tinggi (300 K),
tekanan tinggi (4 atm), dan volume rendah (4 m3). Berikut urutan keempat langkah proses yang terjadi dalam siklus Carnot.
a.
Pada langkah, gas mengalami ekspansi isotermal. Reservoir suhu tinggi
menyentuh dasar silinder dan jumlah beban di atas piston dikurangi.
Selama proses ini berlangsung, temperatur sistem tidak berubah, namun
volume sistem bertambah. Dari keadaan 1 ke keadaan 2, sejumlah kalor (Q1) dipindahkan dari reservoir suhu tinggi ke dalam gas.
b.
Pada langkah kedua, gas berubah dari keadaan 2 ke keadaan 3 dan
mengalami proses ekspansi adiabatik. Selama proses ini berlangsung,
tidak ada kalor yang keluar atau masuk ke dalam sistem. Tekanan gas
diturunkan dengan cara mengurangi beban yang ada di atas piston.
Akibatnya, temperatur sistem akan turun dan volumenya bertambah.
c.
Pada langkah ketiga, keadaan gas berubah dari keadaan 3 ke keadaan 4
melalui proses kompresi isotermal. Pada langkah ini, reservoir suhu
rendah (200 K) menyentuh dasar silinder dan jumlah beban di atas piston
bertambah. Akibatnya tekanan sistem meningkat, temperaturnya konstan,
dan volume sistem menurun. Dari keadaan 3 ke keadaan 4, sejumlah kalor (Q2) dipindahkan dari gas ke reservoir suhu rendah untuk menjaga temperatur sistem agar tidak berubah.
d. Pada langkah keempat, gas mengalami proses kompresi adiabatik dan
keadaannya berubah dari keadaan 4 ke keadaan1. Jumlah beban di atas
piston bertambah. Selama proses ini berlangsung, tidak ada kalor yang
keluar atau masuk ke dalam sistem, tekanan sistem meningkat, dan
volumenya berkurang. Menurut kurva hubungan p–V dari siklus Carnot, usaha yang dilakukan oleh gas adalah luas daerah di dalam kurva p–V siklus tersebut. Oleh karena siklus selalu kembali ke keadaannya semula, ΔUsiklus = 0 sehingga persamaan usaha siklus (Wsiklus) dapat dituliskan menjadi
Wsiklus = ΔQsiklus = (Q1 – Q2) ………. (9–28)
dengan: Q1 = kalor yang diserap sistem, dan
Q2 = kalor yang dilepaskan sistem.
Ketika mesin mengubah energi kalor menjadi energi mekanik (usaha). Perbandingan antara besar usaha yang dilakukan sistem (W) terhadap energi kalor yang diserapnya (Q1) disebut sebagai efisiensi mesin. Persamaan matematis efisiensi mesin ini dituliskan dengan persamaan
dengan η = efisiensi mesin.
Oleh karena usaha dalam suatu siklus termodinamika dinyatakan dengan W = Q1 – Q2 maka Persamaan (9–30) dapat dituliskan menjadi
Pada mesin Carnot, besarnya kalor yang diserap oleh sistem (Q1) sama dengan temperatur reservoir suhu tingginya (T1). Demikian juga, besarnya kalor yang dilepaskan sistem (Q2) sama dengan temperatur reservoir suhu rendah mesin Carnot tersebut. Oleh karena itu, Persamaan (9–30) dapat dituliskan menjadi
Keterangan:
η : efisiensi mesin Carnot
T1 : suhu reservoir bersuhu tinggi (K)
T2 : suhu reservoir bersuhu rendah (K)
Dari Persamaan (9–31) tersebut,
Anda dapat menyimpulkan bahwa efisiensi mesin Carnot dapat ditingkatkan
dengan cara menaikkan temperatur reservoir suhu tinggi atau menurunkan
temperatur reservoir suhu rendah.
Contoh Soal
Sebuah
mesin Carnot menyerap kalor sebesar 1.000 kJ. Mesin ini bekerja pada
reservoir bersuhu 300 K dan 100 K. Berapa kalor yang terbuang oleh
mesin?
Diketahui : T1 = 300 K
T2 = 200 K
Q1 = 1.000 kJ
Ditanyakan: Q2 = …?
Jawab :
η = [ 1- (T2/T1)] x 100% = [1 – (200/300)] x 100% = 33,33% = 1/3
Untuk menghitung Q2, dapat Anda gunakan persamaan efisiensi:
η = [ 1- (Q2/Q1)] x 100%
1/3 = 1 – (Q2/1.000)
Q2 = 333,3 kJ
Jadi, kalor yang terbuang oleh mesin sebesar 333,3 kJ.