Kamis, 25 April 2013

Pengertian Diagram Venn


Di bagian depan kalian telah mempelajari cara menyatakan suatu himpunan, menentukan himpunan semesta, menentukan himpunan bagian dari suatu himpunan, dan operasi pada himpunan. Untuk menyatakan suatu himpunan secara visual (gambar), kalian dapat menunjukkan dalam suatu diagram Venn.
Diagram Venn pertama kali diketemukan oleh John Venn, seorang ahli matematika dari Inggris yang hidup pada tahun 1834–1923. Dalam diagram Venn, himpunan semesta dinyatakan dengan daerah persegi panjang, sedangkan himpunan lain dalam semesta pembicaraan dinyatakan dengan kurva mulus tertutup sederhana dan noktah-noktah untuk menyatakan anggotanya.
Agar kalian dapat memahami cara menyajikan himpunan dalam diagram Venn, pelajari uraian berikut.
Diketahui:
S = {0, 1, 2, 3, 4, ..., 9};
P = {0, 1, 2, 3, 4}; dan
Q = {5, 6, 7}
Himpunan S = {0, 1, 2, 3, 4, ..., 9} adalah himpunan semesta (semesta pembicaraan). Dalam diagram Venn, himpunan semesta dinotasikan dengan S berada di pojok kiri.
Perhatikan himpunan P dan Q. Karena tidak ada anggota persekutuan antara P dan Q, maka P �� Q = { }. Jadi, dapat dikatakan bahwa kedua himpunan saling lepas. Dalam hal ini, kurva yang dibatasi oleh himpunan P dan Q saling terpisah.
Selanjutnya, anggota-anggota himpunan P diletakkan pada kurva P, sedangkan anggota-anggota himpunan Q diletakkan pada kurva Q. Anggota himpunan S yang tidak menjadi anggota himpunan P dan Q diletakkan di luar kurva P dan Q. Diagram Venn-nya seperti Gambar 6.4 di bawah ini.




Contoh Soal Tentang Diagram Venn
Diketahui S = {1, 2, 3, ..., 10} adalah himpunan semesta (semesta pembicaraan), A = {1, 2, 3, 4, 5}, dan B = {bilangan genap kurang dari 12}. Gambarlah dalam diagram Venn ketiga himpunan tersebut.

Penyelesaian:
Diketahui:
S = {1, 2, 3, ..., 10}
A = {1, 2, 3, 4, 5}
B = {2, 4, 6, 8, 10}
Berdasarkan himpunan A dan B, dapat diketahui bahwa A �� B = {2, 4}. Perhatikan bahwa himpunan A dan B saling berpotongan. (Mengapa?) Dalam diagram Venn, irisan dua himpunan harus dinyatakan dalam satu kurva (himpunan A dan B dibuat berpotongan). Adapun bilangan yang lain diletakkan pada kurva masing-masing. Diagram Venn-nya sebagai berikut.