Wednesday, February 27, 2013

Intensitas Radiasi Benda Hitam-

Intensitas Radiasi Benda Hitam- Radiasi panas adalah radiasi yang dipancarkan oleh sebuah benda sebagai akibat suhunya. Setiap benda memancarkan radiasi panas, tetapi pada umumnya, Anda dapat melihat sebuah benda, karena benda itu memantulkan cahaya yang datang padanya, bukan karena benda itu memancarkan radiasi panas. Benda baru terlihat karena meradiasikan panas jika suhunya melebihi 1.000 K. Pada suhu ini benda mulai berpijar merah seperti kumparan pemanas sebuah kompor listrik. Pada suhu di atas 2.000 K benda berpijar kuning atau keputih-putihan, seperti pijar putih dari filamen lampu pijar. Begitu suhu benda terus ditingkatkan, intensitas relatif dari spektrum cahaya yang dipancarkannya berubah. Hal ini menyebabkan pergeseran warna-warna spektrum yang diamati, yang dapat digunakan untuk menentukan suhu suatu benda.
Secara umum bentuk terperinci dari spektrum radiasi panas yang dipancarkan oleh suatu benda panas bergantung pada komposisi benda itu. Walaupun demikian, hasil eksperimen menunjukkan bahwa ada satu kelas benda panas yang memancarkan spektra panas dengan karakter universal. Benda ini adalah benda hitam atau black body. Benda hitam didefinisikan sebagai sebuah benda yang menyerap semua radiasi yang datang padanya. Dengan kata lain, tidak ada radiasi yang dipantulkan keluar dari benda hitam. Jadi, benda hitam mempunyai harga absorptansi dan emisivitas yang besarnya sama dengan satu. Seperti yang telah Anda ketahui, bahwa emisivitas (daya pancar) merupakan karakteristik suatu materi, yang menunjukkan perbandingan daya yang dipancarkan per satuan luas oleh suatu permukaan terhadap daya yang dipancarkan benda hitam pada temperatur yang sama. Sementara itu, absorptansi (daya serap) merupakan perbandingan fluks pancaran atau fluks cahaya yang diserap oleh suatu benda terhadap fluks yang tiba pada benda itu.
Pemantulan yang terjadi pada benda hitam
Gambar 8.2 Pemantulan yang terjadi pada benda hitam.
Benda hitam ideal digambarkan oleh suatu rongga hitam dengan lubang kecil. Sekali suatu cahaya memasuki rongga itu melalui lubang tersebut, berkas itu akan dipantulkan berkali-kali di dalam rongga tanpa sempat keluar lagi dari lubang tadi. Setiap kali dipantulkan, sinar akan diserap dinding-dinding berwarna hitam. Benda hitam akan menyerap cahaya sekitarnya jika suhunya lebih rendah daripada suhu sekitarnya dan akan memancarkan cahaya ke sekitarnya jika suhunya lebih tinggi daripada suhu sekitarnya. Benda hitam yang dipanasi sampai suhu yang cukup tinggi akan tampak membara.
Intensitas Radiasi- Radiasi benda hitam adalah radiasi elektromagnetik yang dipancarkan oleh sebuah benda hitam. Radiasi ini menjangkau seluruh daerah panjang gelombang. Distribusi energi pada daerah panjang gelombang ini memiliki ciri khusus, yaitu suatu nilai maksimum pada panjang gelombang tertentu. Letak nilai maksimum tergantung pada temperatur, yang akan bergeser ke arah panjang gelombang pendek seiring dengan meningkatnya temperatur.
Pada tahun 1879 seorang ahli fisika dari Austria, Josef Stefan melakukan eksperimen untuk mengetahui karakter universal dari radiasi benda hitam. Ia menemukan bahwa daya total per satuan luas yang dipancarkan pada semua frekuensi oleh suatu benda hitam panas (intensitas total) adalah sebanding dengan pangkat empat dari suhu mutlaknya. Sehingga dapat dirumuskan:
I = e σ T4
dengan I menyatakan intensitas radiasi pada permukaan benda hitam pada semua frekuensi, T adalah suhu mutlak benda, dan σ adalah tetapan Stefan-Boltzman, yang bernilai 5,67 × 10-8 Wm-2K-4. Gambar berikut memperlihatkan spektrum cahaya yang dipancarkan benda hitam sempurna pada beberapa suhu yang berbeda. Grafik tersebut memperlihatkan bahwa antara antara panjang gelombang yang diradiasikan dengan suhu benda memiliki hubungan yang sangat rumit.
spektrum cahaya yang dipancarkan benda hitam sempurna
Untuk kasus benda panas yang bukan benda hitam, akan memenuhi hukum yang sama, hanya diberi tambahan koefisien emisivitas yang lebih kecil daripada 1 sehingga:
I total = e.σ.T 4
Intensitas merupakan daya per satuan luas, maka persamaan diatas dapat ditulis sebagai:
Intensitas merupakan daya per satuan luas
dengan:
P = daya radiasi (W)
A = luas permukaan benda (m2)
e = koefisien emisivitas
T = suhu mutlak (K)
Beberapa tahun kemudian, berdasarkan teori gelombang elektromagnetik cahaya, Ludwig Boltzmann (1844 – 1906) secara teoritis menurunkan hukum yang diungkapkan oleh Joseph Stefan (1853 – 1893) dari gabungan termodinamika dan persamaan-persamaan Maxwell. Oleh karena itu, persamaan diatas dikenal juga sebagai Hukum Stefan-Boltzmann, yang berbunyi:
“Jumlah energi yang dipancarkan per satuan permukaan sebuah benda hitam dalam satuan waktu akan berbanding lurus dengan pangkat empat temperatur termodinamikanya”.
Contoh soal radiasi benda
1. Lampu pijar dapat dianggap berbentuk bola. Jari-jari lampu pijar pertama 3 kali jari-jari lampu pijar kedua. Suhu lampu pijar pertama 67o C dan suhu lampu pijar kedua 407o C. Tentukan perbandingan daya radiasi lampu pertama terhadap lampu kedua!
Besaran yang diketahui:
T1 = (67 + 273) K = 340 K
T2 = (407 + 273) K = 680 K
R1 = 3 R2
Perbandingan daya radiasi lampu pertama terhadap lampu kedua:
Perbandingan daya radiasi lampu pertama terhadap lampu kedua
2. sebuah benda dengan suhu 127oC meradiasikan kalor dengan laju 2J/s. berapakan laju radiasi kalor jika suhu benda tersebut 527oC?
Jawab
Diketahui ketika T1 = 127 + 273 = 400K, laju radiasi kalor 2 J/s
T2 = 527+273 = 800K= 2 x 400K = 2T1
Oleh karena P ~ T4 dan T2 = 2T1 paka P2 = 24 x P1 = 16 x 2 J/s = 32 J/s
3. Kawat spiral lampu berpijar memiliki luas permukaan 40mm2 dan bersuhu 727oC. sebanyak 50% energi listrik pada lampu diubah menjadi panas yang diradisikan dan emisivitas kawat pijar bersifat seperti benda hitam.
a. tentukan daya yang diradiasikan lampu pijar!
b. berapa daya listrik pada lampu?
c. Jika tegangan pada lampu 220V berapakan besar arus yang mengalir pada lampu?
Diketahui: A = 40 mm2 = 40 x 10-6 m2 , T = 727 + 273 = 1000 K = 103 K, emisivitas benda hitam e=1 Pradiasi= 50% Plistrik dan V = 220 V
a. Daya radiasi kawat pijar adalah
Pradiasi = eσAT4 = (1)(5,67×10-8)(40.10-6)(103) = 0,23 W
b. oleh karena
Pradiasi= 50% Plistrik
Maka daya listrik pada lampu adalah
Plistrik = 2Pradiasi = (2)(0,23) = 0,46W
c. arus yang melalui lampu adalah
i = Plistrik / V = 0,46/220 = 0,0021A = 2,1mA
Penerapan Radiasi Benda Hitam
Setelah kita membahas konsep radiasi benda hitam, kali ini kita akan mempelajari penerapannya. Dengan menggunakan prinsip radiasi benda hitam, kita dapat menentukan daya yang dipancarkan oleh matahari, suhu matahari, dan radiasi yang dipancarkan oleh tubuh manusia.
1. Penentuan Suhu Permukaan Matahari
Suhu permukaan matahari atau bintang dapat ditentukan dengan mengukur daya radiasi matahari yang diterima bumi. Dengan menggunakan hukum Stefan-Boltzmann, total daya yang dipancarkan oleh matahari adalah:
PM = I.A
Jika diketahui:
I = e . σ . TM4
A = luas permukaan matahari = 4πRM
e = 1
maka PM = e . σ . TM4RM
Matahari memancarkan daya yang sama ke segala arah. Dengan demikian bumi hanya menyerap sebagian kecil, yaitu:
Matahari memancarkan daya yang sama ke segala arah
Keterangan:
PM : daya yang dipancarkan matahari (watt)
TM : suhu permukaan matahari (K)
RM : jari – jari matahari (m)
σTM4 : laju radiasi matahari (watt/m2)
Pabs : daya yang diserap bumi (watt)
RB : jari-jari bumi (m)
D : jarak matahari ke bumi (m)
Meskipun bumi hanya menyerap sebagian daya dari matahari, namun bumi mampu memancarkan daya ke segala arah. Besar daya yang dipancarkan bumi adalah:
Besar daya yang dipancarkan bumi
Keterangan:
Pemt : daya yang dipancarkan bumi (watt)
TB : suhu permukaan bumi (K)
Misalnya bumi berada dalam kesetimbangan termal maka daya yang diserap bumi sama dengan daya yang dipancarkan. Dengan demikian suhu permukaan matahari adalah:
suhu permukaan matahari
2. Radiasi Energi yang Dipancarkan Manusia
Penerapan radiasi benda hitam juga dapat diterapkan pada benda-benda yang tidak berada dalam kesetimbangan radiasi. Sebagian besar energi manusia diradiasikan dalam bentuk radiasi elektromagnetik, khususnya inframerah. Untuk dapat memancarkan suatu energi, tubuh manusia harus menyerap energi dari lingkungan sekitarnya. Total energi yang dipancarkan oleh manusia adalah selisih antara energi yang diserap dengan energi yang dipancarkan.
PT = Ppancar – Pserap
Dengan memasukkan hukum Stefan-Boltzmann diperoleh totalenergi yang dipancarkan manusia sebagai berikut.
PT = σAe(T4 – To4)

PEMBELAJARAN IPA DI LUAR KELAS

IPA merupakan salah satu Mata Pelajaran yang mempunyai ruang lingkup sangat luas. Di dalam IPA dipelajari tentang sesuatu yang berhubungan ...